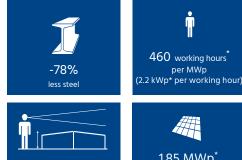
PEG[®] PV Substructure

A unique simplified high-density ground mount solution



The patented PEG[®] substructure has only rods and plates, without rails and crossbeams, with the module frames practically part of the substructure.

The substructure max. height is ~1.2 meter (3'8") above ground.

The main driver behind the PEG[®] system design is to deliver electricity at the lowest possible Levelized Costs of Energy (LCOE), using best-in-class technologies with long-term reliability and scalability.

The PEG[®] offers significant reduction of substructure supply, delivery and installation costs.

Key data

Design

- Extremely light substructure, 78% less steel vs. a conventional system
- Maximum DC area density
- Patented, innovative, minimalist, simple design
- No DC trenching
- No concrete foundations
- Robust & certified for tropical weather, high winds (298+ kmh, 185+ mph) and high snow loads (up to 50+ psf)
- Low visual impact, up to ~1 meter (~3´4") high

Procurement

- Significant CAPEX reduction of both supply and delivery
- 2.2 MW of substructure per 40 ft container

Installation

- Safe installation, working height 1m (3´4")
- No heavy machines, rods install with a hammer drill

- No DC cable trenching
- No concrete foundations
- Simpler H&S procedures
- Low-skilled labor
- 460 working hours* per MWp (2.2 kWp* per working hour)

Operation

- Optimized energy generation, higher during the morning and afternoon
- Low ecological footprint Carbon footprint is 72 % (61 tons CO2/MWp) less versus a conventional fixed-tilt system.
- Proven design with over 400MWp in operation in all continents
- 1.85 MWp* DC per hectare (750 kWp DC per acre)
- Produces ~225% more yield per Hectare (or acre) versus trackers and fixed tilt systems

Technical data	
Orientation PV array	Patented 8° East-West, fixed-tilt, aerodynamic
BOM (Bill of material)	~1.1 rods and ~2.2 clips per module
Large volume scalability	From 10s kWp to GW+ scale
Durability	Galvanized steel rods and plates
Wind loads	Designed for 298+ kmh (185+ mph) per ASCE 7-10 Structural Code; compliance TBD by local engineering. Values may vary depending on the country.
Snow loads	Designed for 50+ psf snow load
Seismic loads	Flexible design allows high tolerances for seismic activity
Certifications	Clamping approval from module manufacturers Wind load certificate by German IFI Institute with local wind codes (ASCE 7-10). The PEG [®] substructure is UL 2703 certified. Values may vary depending on the country.

Requirements	
Land soil condition	Cohesive (e.g. sandy-clay, clayey silt) and non-cohesive soil (e.g. sand or sand-gravel).
Upper soil layer	No hard bedrock or underground infrastructure up to 0.6-1m (2.0 – 3.3 ft) below ground which is the typical foundation depth.
Site slopes	Up to ~10-11% at sites without snow or ~5-6% at sites with snow up to 30 psf, or ~3.5% at sites with snow above 30 psf. To be analysed and confirmed per site.

***** Explanation of key figures on page 1:

MWp/ha:	Referring to the complete DC area, including the gaps between the DC blocks/tables
kWp/working hour:	Time for complete DC installations including inverter stations
MWp/container:	Only the substructure
Machine costs:	All machines required for the DC installation
Labor costs:	Labor for complete DC installations including inverter stations
Logistic costs:	Including machinery and labor, to the site and onsite
All figures assume suitable ground conditions, a min. 5MWp PEG system with 550W modules and may differ regionally.	

PEG[®] Datasheet 2023_0123 Pictures: Jurchen Technology GmbH, Meralli Projects PTY Ltd All data may subject to alterations and errors.

Jurchen Technology GmbH Prinz-Ludwig-Straße 5 97264 Helmstadt, Germany

phone: +49 (0) 9369 98229 6600 fax: +49 (0) 9369 98229 6699 E-Mail: info@jurchen-technology.com www.jurchen-technology.com